

The Nar Valley Mathematics Calculation Policy: Part 2 Multiplication and Division

partners in excellence

Commissioned by The PiXL Club Ltd. June 2016 ADAPTED FOR USE AT THE NAR VALLEY FEDERATION OF SCHOOLS BY E. WILLGRESS – JANUARY 2020

This resource is strictly for the use of member schools for as long as they remain members of The PiXL Club. It may not be copied, sold nor transferred to a third party or used by the school after membership ceases. Until such time it may be freely used within the member school. All opinions and contributions are those of the authors. The contents of this resource are not connected with nor endorsed by any other company, organisation or institution.

© Copyright The PiXL Club Ltd, 2015

About Nar Valley's PiXL Calculation Policy

- The following calculation policy has been devised to meet requirements of the National Curriculum 2014 for the teaching and learning of mathematics, and is also designed to give pupils a consistent and smooth progression of learning in calculations across the school.
- Age stage expectations:

The calculation policy is organised according to age stage expectations as set out in the National Curriculum 2014 and the method(s) shown for each year group should be modelled to the vast majority of pupils. However, it is vital that pupils are taught according to the pathway that they are currently working at and are showing to have 'mastered' a pathway before moving on to the next one. Of course, pupils who are showing to be secure in a skill can be challenged to the next pathway as necessary.

• Choosing a calculation method:

Before pupils opt for a written method they should first consider these steps:

Should I use a formal wrítten method to work ít out?

NCETM

Calculation Guidance Principles

- Develop children's fluency with basic number facts
- Develop children's fluency in mental calculation
- Develop children's understanding of the = symbol
- Teach inequality alongside teaching equality
- Use empty box problems
- Use intelligent practice
- Expose mathematical structure and work systematically
- Move between the concrete and the abstract
- Contextualise the mathematics

Concrete resources

Place value counters Dienes Place value charts Arrays Multiplication squares 100 square Number lines Blank number lines Counting stick

Mult	tiplica	ation
------	---------	-------

Multiplication: Reception

Early learning goal statutory requirement:

✓ They solve problems, including doubling, halving and sharing.

Use pictorial representations and concrete resources to double numbers to 10.

Use concrete sources, role play, stories and songs to begin counting in twos, fives and tens.

Count in twos, fives and tens using practical resources, role play, stories and songs.

Multiplication: Year 1

Year 1statutory requirement:

10

15

✓ Solve one-step problems involving multiplication by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.

Use arrays

Understand multiplication as repeated addition use concrete objects to support understanding.

20

25

30

5 + 5 + 5

Use pictorial representations

Multiplication: Year 2

Year 2 statutory requirement:

✓ Recall and use multiplication and division facts for the 2, 5 and 10 multiplication

tables, including recognising odd and even numbers.

✓Calculate mathematical statements for multiplication and division within the multiplication tables and write them using the multiplication (×), division (÷) and equals (=) signs.

✓ Show that multiplication of two numbers can be done in any order (commutative) and division of one number by another cannot.

✓ Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts.

Develop recall of multiplication facts (alongside inverse of the corresponding division facts).

12 x 4 = 48

Multiplication: Year 3

Year 3 statutory requirements:

OR

✓ Recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables.

✓ Write and calculate mathematical statements for multiplication using the multiplication tables that they know, including for two-digit numbers times one-digit numbers, using mental and progressing to formal written methods.

✓ Solve problems, including missing number problems, involving multiplication including positive integer scaling problems and correspondence problems in which n objects are connected to m objects.

Use concrete resources and pictorial representations to develop conceptual understanding of the grid method of multiplication.

as the red ribbon. What is it's length?

Multiplication: Year 4

Year 4 statutory requirement:

✓ Recall multiplication and division facts for multiplication tables up to 12×12

✓ Use place value, known and derived facts to multiply and divide mentally, including: multiply two-digit and three-digit numbers by a one-digit number using formal written layout.

✓ Solve problems involving multiplying and adding, including using the distributive law to multiply two digit numbers by one digit, integer scaling problems and harder correspondence problems such as n objects are connected to m objects.

								_				
Х	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2	3	4	5	6	7	8	9	10	11	12
2	2	4	6	8	10	12	14	16	18	20	22	24
3	3	6	9	12	15	18	21	24	27	30	33	36
4	4	8	12	16	20	24	28	32	36	40	44	48
5	5	10	15	20	25	30	35	40	45	50	55	60
6	6	12	18	24	30	36	42	48	54	60	66	72
7	7	14	21	28	35	42	49	56	63	70	77	84
8	8	16	24	32	40	48	56	64	72	80	88	96
9	9	18	27	36	45	54	63	72	81	90	99	108
10	10	20	30	40	50	60	70	80	90	100	110	120
11	11	22	33	44	55	66	77	88	99	110	121	132
12	12	24	36	48	60	72	84	96	108	120	132	144

Develop recall of multiplication facts (alongside the inverse of the corresponding division facts). Build on learning from Year 3, continue to use the grid method to multiply increasingly larger numbers.

2 eggs 150g flour 180g sugar Use knowledge of times tables to solve scaling problems. Susie wants to bake 12 cupcakes people. The ingredients given are for four cupcakes. How much flour will she need?

X

Multiplication: Year 5

Year 5 statutory requirements:

✓ Multiply numbers up to 4 digits by a one- or two-digit number using a formal written method, including long multiplication for two-digit numbers.

✓ Multiply and divide whole numbers and those involving decimals by 10, 100 and 1000

Progressing from grid method to short multiplication The short multiplication method is introduced alongside the grid method and the expanded form to aid understanding.

To multiply by 10, 100, 1000 children should use place value charts to show that the digit moves a column (s) to the left .The value of the digit is increasing by 10, 100 or 1000 times.

	1	2	4	X	5	11
	۱	2	4			
X			5			
		2	0	(4	× 5)	
	1	0	0	(20	x 5)	
	5	0	0	(100	×5)	
	6	2	0			

Multiplication: Year 5

Year 5 statutory requirements:

✓ Multiply and divide whole numbers and those involving decimals by 10, 100 and 1000

Progressing from grid method to long multiplication. When long multiplication is first introduced, both equations should be presented so that the answers to the individual multiplication steps are on the same line. Children should be encouraged to discuss what is similar and what is different.

Multiplication: Year 6

Year 6 statutory requirements:

✓ Multiply multi-digit numbers up to 4 digits by a two-digit whole number using the formal written method of long multiplication.

✓ Multiply one-digit numbers with up to two decimal places by whole numbers.

Continue to use compact short multiplication to multiply by single digits

	3	4	2
×			7
2	3	9	4
	2	1	

	2	7	4	1
×				6
1	6	4	4	6
	4	2		

Multiplying a two digit number by a three or four digit number should be introduced through the grid method before moving to long multiplication to aid understanding. When long multiplication is first introduced, both equations should be presented so that the answers to the individual multiplication steps are on the same line. Children should be encouraged to discuss what is similar and what is different.

6.

2

partners in excellence

Concrete resources:

Arrays Multiplication squares 100 square Number lines Blank number lines Counting stick Place value apparatus

Division: Reception

Early learning goal statutory requirement:

✓ They solve problems, including halving and sharing.

Use pictorial representations and concrete resources to halve numbers to 10.

Begin to share quantities using practical resources, role play, stories and songs.

Role play example:

It is the end of the party and the final two teddies are waiting for their party bags. Provide empty party bags and a small collection of items such as gifts, balloons and slices of cake. Ask the children to share the objects between the two bags.

Division: Year 1

Year 1 statutory requirement:

• solve one-step problems involving multiplication and division, by calculating the answer using concrete objects, pictorial representations and arrays with the support of the teacher.

12 ÷ 4

Begin to understand division as **grouping** using concrete resources.

Pictorial representation of sharing **12 gold coins** between 2, 3 and 4 pirates!

F)		>	<	L	
Ρ	R	l	Μ	Α	R	Y

Division: Year 2

Year 2 statutory requirement:

- ✓ Recall and use division facts for 2, 5 and 10 multiplication tables.
- ✓ Calculate mathematical statements for multiplication and division within the multiplication

tables and write then using the multiplication (x), division () and equals (=) signs. ✓ Solve problems involving multiplication and division, using materials, arrays, repeated addition, mental methods, and multiplication and division facts, including problems in contexts. ✓ Find 1/3: 1/4: 2/4: 3/, of a length shape, set of objects or quantity.

 \checkmark Find 1/3; 1/4; 2/4; $\frac{3}{4}$ of a length, shape, set of objects or quantity

Grouping using concrete

21-3=7

Further develop understanding of difference between **sharing and grouping** using concrete resources.

\odot \odot \odot	$\bigcirc \bigcirc $
	$\bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \\ \bigcirc \bigcirc$

18 smiley faces shared between 3 classes.

Model division as grouping on a

Children use numbered number lines to divide using grouping.

18 into groups of 3 = 6 groups 18 into jumps of 3 = 6 jumps 18 \div 3 = 6 18 \div 3 = 6 19 \div 10 11 12 13 14 15 16 17 (18) 19 20 21 22 Reinforce division through the use of arrays.

Remember to develop connections between fractions and division and rephrase this calculation as 1/3 of 18 is the same as 18 ÷ 3 = 6.

Division: Year 3 & 4

Year 3 statutory requirement:

- ✓ Recall and use multiplication and division facts for the 3, 4 and 8 multiplication tables
- ✓ Write and calculate mathematical statements for division using the multiplication tables that they know, including for two-
- digit numbers times one-digit numbers, using mental and progressing to formal written methods
- ✓ Solve problems, including missing number problems, involving division including positive integer scaling problems and correspondence problems in which n objects are connected to m objects.

1. Grouping: A number line counting up from zero. This representation should be supported by grouping of concrete materials and other pictorial representations. **2. Grouping with remainders:** Again using a number line counting up from zero. This should also be supported by grouping of concrete materials and other pictorial representations.

3. Efficient Grouping: Rather than counting individually, children now use groups for efficiency. The number of groups should be recorded above the jump.

4. Efficient Grouping with remainders: The efficient grouping method now incorporates remainders

Limit numbers to NO remainders in the answer OR carried (each digit must be a multiple of the divisor). Limit numbers to NO remainders in the final answer, but with remainders occurring within the calculation. Extend to 3-digit number first where the divisor can go into the first number and then progress to when the divisor cannot go into the first number.

In Year 4, continue to develop the use of informal number line methods taught in Year 3. Start to teach compact short division when children are secure with dividing on a number line. Teach compact short division using the following progression.

² 4

build on the connections between multiplication and division.

Division: Year 3 & 4*

Year 4 statutory requirement: Note - there isn't a statutory objective for division. However, Y4 statutory

multiplication objectives are to (1) recall multiplication and division facts for multiplication tables up to 12 × 12

and (2) multiply two-digit and three-digit numbers by a one-digit number using formal written layout so we will

 $\begin{array}{c|ccccc} 0 & 3 & 7 \\ 5 & 1 & 18 & 35 \\ \end{array}$

2, ¼ of 872 and 1/5

partners in excellence

x 3)

partners in excellence

3)

٥

х

(4

- Whole number remainder = 27 r 2
- Fraction remainder = $27\frac{2}{8} = 27\frac{1}{4}$
- Decimal remainder = $27\frac{1}{4} = 27\frac{25}{100} = 27.25$

Division: Year 6

Year 6 statutory requirement:

 ✓ divide numbers up to 4 digits by a two-digit whole number using the formal written method of long division, and interpret remainders as whole number remainders, fractions, or by rounding, as appropriate for the context

Continue to use compact short division to divide numbers up to 4 digits by a 1-digit whole number.

Continue to develop the formal 'chunking' method to divide 3- or 4-digit numbers by a 2-digit whole number.

	4	3	2	·	1	6	11	2	7
			2	7					
1	6	34	'3	2					
	-	1	6	0	(1	0	х	ı	6)
		2	7	2					
	-	1	6	0	(1	0	x	I	6)
	1	X	1	2					
	-		8	0		(5	х	l	6)
			3	2					
	-		3	2		(2	Х	1	6)
			Ó	0					

218 ÷ 8 =

327-19

34 2

04

38

193

r 4

(10×19)

(5 X I 4)

(2 X 1 9)

- Whole number remainder = 27 r 2
- Fraction remainder = $27\frac{2}{8} = 27\frac{1}{4}$
- Decimal remainder = $27\frac{1}{4} = 27\frac{25}{100} = 27.25$

2

If appropriate, the formal long division method can be introduced to divide numbers up to 4 digits by a 2-digit whole number.

4r1 2

2

0

8 8

8

6

2

partners in excellence